Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 132211, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723833

RESUMO

Prebiotics are non-digestible compounds that promote intestinal microbiota growth and/or activity. Xylooligosaccharides (XOS) are new prebiotics derived from the hemicellulose fraction of lignocellulosic materials. Challenges in using those materials as sources for prebiotic compounds lie in the hemicellulose extraction efficiency and the safety of those ingredients. In this sense, this work aims to optimize hemicellulose extraction and XOS production through direct enzymatic hydrolysis of alkali pre-treated wheat straw without undesired byproducts. By increasing the temperature of the enzymatic step from 40 °C to 65 °C we achieved an improvement in the extraction yield from 55 % to 80 %. Products with different degrees of polymerization were also noticed: while XOS ≤ X6 where the main products at 40 °C, a mixture of long arabinoxylan derived polymers (ADPo) and XOS ≤ X6 was obtained at 65 °C, irrespective of the extraction yield. Thus, a modulatory effect of temperature on the product profile is suggested here. Among the XOS ≤ X6 produced, X2-X3 were the main products, and X4 was the minor one. At the end of the hydrolysis, 146.7 mg XOS per gram of pre-treated wheat straw were obtained.

2.
Food Res Int ; 172: 113086, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689862

RESUMO

The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1-1000 µm), using small amounts of samples and reactants, ca. 102-103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems' development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.


Assuntos
Bioensaio , Microfluídica , Disponibilidade Biológica , Alimentos , Trato Gastrointestinal , Lipossomos
3.
Food Chem ; 394: 133459, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752122

RESUMO

A scale-up process was carried out to obtain potent bioactive peptides from whey protein through a simple hydrolysis process. The scale-up was satisfactory, with results similar to those obtained at lab scale: a fraction of peptides < 1 kDa with ACE inhibitory activity of 18.44 ± 2.47 µg/mL, a DPPH value of 69.40 ± 0.44%, and an ORAC value of 3.37 ± 0.03 µmol TE/mg protein. The peptide sequences responsible for the ACE inhibitory activity were also similar to those identified at lab scale: PM, LL, LF, HFKG and PT. The hydrolysate was used as a functional ingredient in a low-fat yoghurt. The consumer sensory taste panel found no significant difference (p > 0.05) between the bitterness of the control and the functional yoghurt, and about 50% of consumers would buy it. The hydrolysate maintained its bioactivities for 4 months at -20 °C (after thawing and pasteurisation), and for 1 week in yoghurt at 4 °C.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antioxidantes/metabolismo , Hidrólise , Peptídeos/metabolismo , Peptídeos/farmacologia , Hidrolisados de Proteína , Proteínas do Soro do Leite
4.
Comput Struct Biotechnol J ; 19: 1214-1232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680362

RESUMO

A novel esterase, EstD11, has been discovered in a hot spring metagenomic library. It is a thermophilic and thermostable esterase with an optimum temperature of 60°C. A detailed substrate preference analysis of EstD11 was done using a library of chromogenic ester substrate that revealed the broad substrate specificity of EstD11 with significant measurable activity against 16 substrates with varied chain length, steric hindrance, aromaticity and flexibility of the linker between the carboxyl and the alcohol moiety of the ester. The tridimensional structures of EstD11 and the inactive mutant have been determined at atomic resolutions. Structural and bioinformatic analysis, confirm that EstD11 belongs to the family IV, the hormone-sensitive lipase (HSL) family, from the α/ß-hydrolase superfamily. The canonical α/ß-hydrolase domain is completed by a cap domain, composed by two subdomains that can unmask of the active site to allow the substrate to enter. Eight crystallographic complexes were solved with different substrates and reaction products that allowed identification of the hot-spots in the active site underlying the specificity of the protein. Crystallization and/or incubation of EstD11 at high temperature provided unique information on cap dynamics and a first glimpse of enzymatic activity in vivo. Very interestingly, we have discovered a unique Met zipper lining the active site and the cap domains that could be essential in pivotal aspects as thermo-stability and substrate promiscuity in EstD11.

5.
PLoS One ; 9(2): e87190, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520326

RESUMO

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).


Assuntos
Resinas Acrílicas/química , Embalagem de Alimentos , Hidrogéis/química , Modelos Teóricos , Polietilenoglicóis/química , Polietilenoimina/química , Temperatura , Acrilatos/química , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanogéis , Tamanho da Partícula , Soluções , Eletricidade Estática
6.
Bioprocess Biosyst Eng ; 33(3): 347-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19471972

RESUMO

Several studies in laboratory-scale bioreactors are undertaken in order to verify the beneficial effect of thermal spring water in the culture medium of Thermus thermophilus HB27. Two bioreactor configurations, stirred tank and airlift, are investigated to determine the most suitable one to develop a continuous process. Water mineral composition affects the lipolytic enzyme secretion and growth of T. thermophilus HB27 in both bioreactor configurations. Furthermore, the lipolytic activity is strongly enhanced when stirred tank bioreactor is used. Moreover, operation in a stirred tank at an agitation rate of 650 rpm leads to the highest total lipolytic activity (intra- and extracellular enzyme) around 280 U/L after 32 h. Continuous cultures operating in the optimised conditions determined in batch cultures are carried out. It is noticeable that the stirred tank bioreactor was able to operate in a continuous flow mode without operational problems. In addition, the lipolytic activity obtained is about 2-fold higher than that attained in batch cultures.


Assuntos
Biotecnologia/métodos , Thermus thermophilus/metabolismo , Biomassa , Reatores Biológicos , Cátions , Meios de Cultura/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Lipólise , Temperatura , Fatores de Tempo , Água/química
7.
Bioresour Technol ; 100(14): 3630-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19342226

RESUMO

In Thermus thermophilus HB27 cultures the localisation of lipolytic activity is extracellular, intracellular and membrane bound, with low percentage for the former. Therefore, the extracellular secretion must be increased in order to simplify the downstream process and to reduce the economic cost. This study focuses on the design of an innovative operational strategy to increase extracellular lipolytic enzyme production by T. thermophilus HB27 at bioreactor scale. In order to favour its secretion, the effect of several operational variables was evaluated. Among them, the presence of oils in the culture medium leads to improvements in growth and lipolytic enzyme activity. Sunflower oil is the most efficient inducer showing better results when added after 10h of growth. On the other hand, although surfactants lead to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. Thus, by addition of surfactants at the stationary phase, a release of intracellular and membrane enzyme which increases the extracellular enzyme proportion is detected. Based on these results, strategies with successive addition of oil and surfactant in several culture phases in shake flask are developed and verified in a laboratory scale stirred tank bioreactor.


Assuntos
Biotecnologia/métodos , Microbiologia Industrial/métodos , Thermus/enzimologia , Reatores Biológicos , Meios de Cultura/metabolismo , Detergentes/farmacologia , Gases , Helianthus/metabolismo , Concentração de Íons de Hidrogênio , Microbiologia Industrial/economia , Cinética , Lipase/metabolismo , Lipídeos/química , Oxigênio/metabolismo , Óleos de Plantas/metabolismo , Tensoativos/química , Thermus/citologia , Thermus/crescimento & desenvolvimento
8.
Biotechnol Prog ; 20(1): 65-73, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14763825

RESUMO

Three pure isoenzymes from Candida rugosa lipase (CRL: Lip1, Lip2, and Lip3) were compared in terms of their stability and reactivity in both aqueous and organic media. The combined effect of temperature and pH on their stability was studied applying a factorial design. The analysis of the response surfaces indicated that Lip1 and Lip3 have a similar stability, lower than that of Lip2. In aqueous media, Lip3 was the most active enzyme on the hydrolysis of p-nitrophenyl esters, whereas Lip1 showed the highest activity on the hydrolysis of most assayed triacylglycerides. The highest differences among isoenzymes were found in the hydrolysis of triacylglycerides. Thus, a short, medium, and long acyl chain triacylglyceride was the preferred substrate for Lip3, Lip1, and Lip2, respectively. In organic medium, Lip3 and Lip1 provided excellent results in terms of enantioselectivity in the resolution of ibuprofen (EF value over 0.90) and conversion, whereas initial esterification rate was higher for Lip3. However, the use of Lip2 resulted in lower values of conversion, enantiomeric excess, and enantioselectivity. In the case of trans-2-phenyl-1-cyclohexanol (TPCH) resolution, initial esterification rates were high except for Lip3, which also produced poor results in conversion and enantiomeric excess. The performance of the pure isoenzymes in the enantioselectivity esterification of these substrates was compared with different CRL crude preparations with known isoenzymatic content and the different results could not be explained by their isoenzymatic profile. Therefore, it can be concluded that other factors can also affect the catalysis of CRL and only the reproducibility between powders can ensure the reproducibility in synthesis reactions.


Assuntos
Candida/enzimologia , Cicloexanóis/química , Ibuprofeno/química , Lipase/química , Triglicerídeos/química , Água/química , Candida/classificação , Catálise , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Hidrólise , Isoenzimas/análise , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isomerismo , Lipase/análise , Lipase/isolamento & purificação , Compostos Orgânicos/química , Projetos Piloto , Pós , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...